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Abstract

We present an information theoretic framework for quantifying causal influences
between random variables in a known causal graph. The proposed measures are
“context-dependent” in that their values are determined by a realization of certain
nodes in the graph, in particular, the node representing the cause. By contrast, they
do not depend on the value taken by the effect. This perspective is motivated by the
idea that different values of a cause will have different levels of influence on the
distribution of the effect; however, once those influences have been administered,
the exact outcome will occur by chance, according to some conditional distribution.
We demonstrate how various approaches to measuring causal influences, such
as conditional mutual information and causal strength, can be modified to be
context-dependent. The dependence on context gives rise to notions of causal
influence that are not captured by non-context-dependent measures, namely chain
reactions, caused uncertainty, and shared responsibility. We demonstrate the value
of the context-dependent perspective through an analysis of properties and multiple
examples and analogies.

1 Introduction

Consider a directed acyclic graph (DAG) G = (X,E) with nodes Xi ∈ X for i = 1, . . . , n and
directed edges (j → k) ∈ E for j and k such that Xj directly influences Xk. Given such a graph, we
seek to provide a quantification of the influence that Xj has on Xk. Such a measure has numerous
uses, including model selection and exploratory data analysis. Given that human thought is largely
driven by causal reasoning, the AI community in particular stands to benefit from a measure of causal
influences that is consistent with human intuitions in a variety of settings.

To develop this measure, Janzing et al. [6] propose a set of postulates that, if satisfied, should ensure
that the causal measure is consistent with human intuition. They further introduce causal strength
(CS), which is shown to satisfy the postulates. While the postulates (and therefore CS) are logical,
they are concerned only with the average causal influence of one variable on another. To see why
this is an incomplete representation of human intuition on causal influences, consider the following
simple example: let X represent winning the lottery and Y represent average money spent per month.
Clearly, we will have that X → Y ; the question is, how much? Any average measure will say that,
because X occurs with virtually zero probability, it has a negligible effect on Y . Our intuitions, on
the other hand, would say that the level of influence depends on whether or not X = 1, i.e. whether
or not the lottery was won. While most people would say the lottery has very little influence on their
decision making (because most people have not won), a lottery winner would certainly attribute their
spending habits to their unlikely victory. Thus, a quantification of X → Y ought to depend on the
value of X . We call this perspective on causal influences “context-dependent.”

This perspective is not in itself novel; in fact, it is central to the notion of causality. Pearl and
Mackenzie [12] recently introduced the Ladder of Causation, which is topped by the questions “Was
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it X that caused Y ?” and “What if X had not occurred?”, both of which are fundamentally concerned
with the values taken by X . In an analysis of causal interpretations of ANOVA, Northcott [9] argues
that ANOVA is insufficient because (among other reasons) a measure of causal strength should be
“context-specific.” Existing methods that are dependent upon context, however, do not satisfy the
postulates proposed by Janzing et al. [6], and therefore are not well suited to address the problem of
quantifying causal influences in full generality. For example, the average causal effect considers the
average difference in effect that results from switching the value of the cause [5, 11], and as a result,
only captures influences on the first-order moment of the effect. The same applies to the path-specific
measure presented by Pearl [10].

As such, we propose a framework that bridges the information-theoretic approach of Janzing et al. [6]
with the context-dependent perspective. The paper proceeds as follows: Section 2 defines relevant
notation. Section 3 provides a brief summary of non-context dependent measures from which this
work is built upon. Section 4 defines the context-dependent measures and discusses some key
properties. Section 5 provides examples that illustrate new notions of causal influence enabled by
the context-dependent perspective. Finally, Section 6 summarizes our contribution and suggests
directions for future work.

2 Notation

Define a DAG G = (X,E) with nodesX = {X1, . . . , Xn} and edgesE ⊂ [n]× [n], whereXi ∈ Xi,
[n] , {1, . . . , n}, and the possible edges in E are constrained to be such that G contains no cycles.
At times, the set of nodes will instead be given by {X,Y, Z}. For the sake of clarity, assume that all
random variables are discrete, i.e. that each Xi is finite with cardinality |Xi|, though all results can be
trivially extended to settings with continuous or mixed random variables. Let the joint pmf of the
nodes be p (i.e. X ∼ p), with p satisfying the causal Markov condition with respect to G [11]. For any
two disjoint sets of indices S1, S2 ⊆ [n] we have the pmf and conditional pmf given by p(XS1

) and
p(XS1

| XS2
), respectively. For any S ⊆ [n], define the set of indices of parent nodes of that set to

be PS , {k : ∃s ∈ S s.t. (Xk → Xs) ∈ E}. Using this notation, we denote the set of parent nodes
by XPS

. Note that, with slight abuse of notation, curly braces may be omitted when the meaning is
clear (i.e. Xi,j = X{i,j} = {Xi, Xj}). For nodes given by S ⊆ [n], the set of values taken by those
nodes to be XS ,

∏
s∈S Xs. In general, capital letters will be used to represent random variables,

while lower case letters are used to represent values (or realizations) of those variables. For example,
p(xi) is the probability of the event Xi = xi. All logarithms will be assumed to be base two. Finally,
we define two information theoretic quantities used frequently throughout. First, the entropy and
conditional entropy of random variables (X,Y ) ∼ p are given by H(X) = −

∑
x p(x) log p(x) and

H(X | Y ) = −
∑
x,y p(x, y) log p(x | y), respectively. Second, for two distributions p and p′ over

X , the KL-divergence from p to p′ is given by D (p || p′) =
∑
x p(x) log

p(x)/p′(x). In the special
case where X is a Bernoulli random variable with p = Bern(p1) and p′ = Bern(p2), we will
equivalently write the KL-divergence as D (p1 || p2).

3 Related Work

We will now introduce two information theoretic quantifications of causal influence which can be
adapted to be context-dependent.

3.1 Conditional Mutual Information (CMI)

While mutual information is a symmetric measure, it may be interpreted as a representation of causal
influence in scenarios where there is a known causal model. Suppose, for example, we wish to
measure the influence of a random variable X on another random variable Y in a DAG containing the
edge X → Y . If we let Z represent some subset of other nodes (i.e. the other parents or predecessors
of Y ), then the CMI is given by [3]:

I(X;Y | Z) = H(Y | Z)−H(Y | X,Z) = E
[
log

p(Y | X,Z)
p(Y | Z)

]
(1)

These equivalent definitions of CMI give rise to two interpretations. First, we can interpret CMI as
the reduction in uncertainty of Y that is obtained by additionally conditioning on X . Intuitively, we
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only attribute a causal influence of X on Y if it provides information about Y that is not provided by
other non-descendants of Y . Second, we can think of the CMI as measuring the extent to which X
aids in the prediction of Y . This interpretation is obtained by viewing the CMI as the expected value
of a log-likelihood ratio, where the numerator is given by the true generative distribution of Y and the
denominator is given by a distribution of Y that is not conditioned on X . While these interpretations
are barely distinguishable from one another (because they are equivalent), we will see that they are
no longer equivalent when introducing a context-dependency. A critique of CMI provided by Janzing
et al. [6] is that there are cases where X is the only cause of Y , but when taking a limit, Y can be
perfectly inferred from Z, yielding a CMI of zero. We will show that these missed causal influences
can be avoided by introducing a dependence on context.

A popular notion of causality between time series studied in the information theory literature is
directed information (DI) [7, 8], which can be thought of as a generalization of Granger causality [4]
for non-linear and/or non-Gaussian settings [1]. The time series causality problem addressed by DI
can be seen as a special case of using CMI for the problem considered in this paper, where nodes
represent a single sample of a time series and the edges are restricted to point forward in time.

3.2 Causal Strength

The causal strength (CS) was introduced by Janzing et al. [6] as an example of a causal measure that
satisfies a set of postulates proposed in the same paper. The CS bears a resemblance to the CMI in
that it may be represented as an expected log-likelihood ratio between two distributions:

CX→Y , E
[
log

p(Y | X,Z)
p̃(Y | Z)

]
(2)

where p̃(Y | Z) is known as the “post-cutting” distribution and differs from the standard conditional
distribution as follows:

p̃(y | z) ,
∑
x

p(y | z, x)p(x) 6=
∑
x

p(y | z, x)p(x | z) = p(y | z) (3)

As we can see, the post-cutting distribution weights different conditional distributions of Y given
X and Z based on the marginal distribution of X . Thus, if Z has a significant influence on the
distribution of Y through X , then this influence is removed from the post-cutting distribution. The
difference between CMI and CS is subtle — in both cases we are comparing the predictability of
Y given all of its parents with the predictability of Y given all parents excluding X . The difference
between CMI and CS is how much is known about the hidden X . In particular, CMI measures the
difference in predictability when we can infer something about X from other nodes in the graph
while CS enforces that we know nothing about the hidden X , aside from its marginal distribution.

4 Context Dependent Causal Measures

Let Xj be a node whose causal influence upon Xi we wish to measure. We begin by defining a
context of node Xi to be xPi

∈ XPi
. It is important to make the distinction that a context of Xi

differs from the parent set XPi in that the parent set is a set of nodes, whereas a context is a set of
values that those nodes have taken on. In other words, a context is a realization of the parent set. We
further define a context of Xi with the value xj hidden to be:

xPi\j , {xk : k ∈ Pi, k 6= j} (4)

Using the notion of contexts, we will present two context dependent measures of causal influence.

4.1 Context-Dependent Conditional Mutual Information (CDMI)

Begin by defining two conditional pmfs of Xi:

pi(xi) , p(xi | xPi
) (5)

pi\j(xi) , p(xi | xPi\j , xPj
) (6)

For ease of (and with slight abuse of) notation, it is implied that pi and pi\j are functions of the
appropriate contexts — i.e. pi(xi) will be different for two contexts xPi

6= x′Pi
despite their absence
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from the term pi(xi). We can interpret pi as describing a generative model for our graph, noting that
the likelihood of a collection of observations x = {x1, . . . , xn} can be factorized as:

p(x) =

n∏
i=1

pi(xi) (7)

To interpret pi\j , note that it may be decomposed as:

pi\j(xi) =
∑
x′
j∈Xj

p(xi | xPi\j , x
′
j)p(x

′
j | xPj

) ,
∑
x′
j∈Xj

p′i(xi)pj(x
′
j) (8)

where we define p′i to be the pi that results from substituting x′j for xj in the context xPi
. Using this

decomposition, pi\j can be interpreted as an estimate of pi that is acquired by weighting possible
distributions p′i by the conditional probability of each possible value of the hidden xj given its context
xPj . Using these two conditional distributions, we define the CDMI from Xj to Xi as:

Cj→i(xPi
, xPj

) , D(pi || pi\j) (9)

where the causal measure is now a function of the contexts of the cause and the effect. Importantly,
we note that the causal measure is not dependent on the value taken by the effect. This aspect of
the proposed measure formalizes the perspective that different values of a cause will have different
effects on the distribution of an effect, but the particular value of the effect will be randomly sampled
from that distribution once the influence has been administered.

As a result of the context dependency, the CDMI is itself a random variable. Taking the expectation
over all contexts recovers the non-context-dependent CMI:

E[Cj→i(XPi , XPj )] = I(Xj ;Xi | XPi\j , XPj ) (10)

This provides the clearest intuition regarding the insufficiency of a non-context dependent measure of
causal influence, namely that if a particular cause is unlikely, then its impact on the causal influence
is small, regardless of the impact it may have.

Finally, we note that, as a direct result of the properties of the KL-divergence, the CDMI is always
non-negative and is zero for a given context if and only if pi(xi) = pi\j(xi) for all xi ∈ Xi. This
property is not a given for a context dependent version of CMI. In particular, we note that the
equivalent definitions of CMI given by (1) are no longer equivalent when conditioning upon contexts:

CX→Y (x, z) = E
[
log

p(Y | X,Z)
p(Y | Z)

∣∣∣X = x, Z = z

]
6= H(Y | Z = z)−H(Y | X = x, Z = z)

(11)
It is clear that the two definitions of CMI yield vastly different interpretations when adapting to the
context-dependent setting. The most notable difference is that, for certain contexts, the difference in
conditional entropies on the RHS of (11) may be negative, while the proposed CDMI on the LHS is
always non-negative. This is because it is possible that there is a greater level of uncertainty in Y
when conditioning on a particular value of x, despite that fact that this cannot happen on average
because conditioning reduces entropy [3]. An example of this scenario is presented in Section 5.2
where we discuss a notion of caused uncertainty.

4.2 Context Dependent Causal Strength (CDCS)

Next we demonstrate how the causal strength introduced by [6] can be made context-dependent. First,
using notation from the decomposition for pi\j given by (8), define the “post cutting” distribution [6,
Definition 1] as:

p̃i\j(xi) ,
∑
x′
j∈Xj

p′i(xi)p(x
′
j) (12)

where p(x′j) is the marginal distribution of Xj evaluated at x′j , as opposed to the conditional
distribution of Xj given a context as in (8). Using this distribution, we can define the CDCS as:

C̃j→i(xPi
) , D

(
pi || p̃i\j

)
(13)
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As with the CDMI, taking the expectation of the CDCS with respect to possible contexts recovers the
standard CS. It is important to note that the CDCS is only a function of xPi , the context of the effect.
This enables CDCS to satisfy the locality postulate [6, P2], which states that the influence of Xj on
Xi should only depend on how Xi depends on its parents, XPi

, and the joint distribution of XPi
.

While CDMI does not satisfy this postulate (as is made clear by (6)), a counterargument to the need
for locality is that it removes any ability to detect chain reactions (see Section 5.1). Thus, locality
may not be desired in all causal inference settings, and the decision between use of CDMI and CDCS
should be problem-specific.

4.3 Direct vs. Total Effects, Interventions, and Counterfactuals in the Context Dependent
Framework

The proposed context-dependent measures of causal influence have interesting interpretations with
regard to common discussion topics in causal inference. In particular, we note that simple adjustments
to what constitutes a context can enable a distinction between total and direct effects or the ability to
utilize the do-operator of Pearl [11]. While a complete discussion of these extensions is postponed
for future work, they are briefly discussed here. We will show in Section 5 that, even in simple
observational settings where only direct effects are considered, the context-dependent measures of
causal influence give rise to interesting results.

Both the CDMI and CDCS are measurements of the direct effect of one variable on another. If
Xj 6∈ Pi, then Cj→i(xPi , xPj ) = C̃j→i(xPi) = 0 for all (xPi , xPj ) ∈ XPi × XPj , i.e. Xj will
have a causal influence of zero upon Xi for any context if it is not a parent of Xi. Furthermore,
consider a three-node DAG given by X3 ← X1 → X2 → X3. Then, when measuring the influence
of X1 on X3 for a given context (x1, x2), the distributions that take an average over possible values
of X1 given by (6) and (12) neglect to consider the effects those values have on the value taken by
X2, which remains fixed at x2. As such, C1→3 and C̃1→3 do not capture any effects that X1 has on
X3 through X2. In order to extend context-dependent perspective to measure the total effect of Xj

on Xi, we can modify the contexts to exclude any intermediaries of the two variables in question
(i.e. X2 in the above example) and instead include the parents of those intermediaries. The total
context dependent causal influence would not depend on the values of the intermediate causes. This
can be seen as an extension of the previously noted perspective (that a cause will only impact the
distribution of an effect) to intermediate effects.

Building on the measurement of total effects, we can incorporate the notion of interventions using
the do-operator [11]. In particular, we note that if the contexts are set up as described above to
account for the total effect of Xj on Xi, then we can equivalently think of the value xj as being
replaced by the intervention do(xj). This is not in itself a novel contribution, as it follows from
Pearl’s causal calculus, which determines the scenarios in which we can substitute an intervention for
an observation [11]. A more interesting note is the relationship to counterfactual reasoning provided
by this approach. In particular, we note that even when we use the interventional lens of do(xj), the
context xPj still factors into equation (6). While it is, at first, counterintuitive to include the value
taken by the parents of Xj when considering the influence of an intervention on Xj , it makes sense
when we frame the causal measure as asking the counterfactual question: “How different would I
expect the distribution of Xi to be if I had not intervened on Xj?” Thus, rather than considering the
effect of an intervention (or observation) relative to a particular alternative intervention, the proposed
measures compare the influence of a particular cause with the expected course taken by nature in a
particular context.

5 Context-Dependent Notions of Causal Influence

We now introduce three notions of causal influence that rely upon the context-dependent perspective.
In each case, the concept is illustrated by example. A formal characterization of these concepts will
be the subject of future work. For all of the following examples our focus will be on the CDMI.

5.1 Chain Reactions

For the first example we will consider a simplified version of the example proposed by Ay and Polani
[2] and modified to include noise by Janzing et al. [6]. Specifically, consider the scenario where a
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message is being passed through a chain of messengers (i.e. random variables). In such a scenario, the
corresponding DAG is given by a straight line, i.e. X1 → X2 → X3 → . . .→ Xn. We will consider
the simplest case, where a binary message is being passed between nodes, with the message being
flipped with probability ε and interpret Xi as “the message passed from messenger i to messenger
i+ 1”. Formally, let Xi ∈ {0, 1} with:

Xi =

{
Xi−1 w.p. 1− ε
Xi−1 ⊕ 1 w.p. ε

(14)

where ⊕ is the XOR operation. In determining Cj→i, we need only to consider the case j = i− 1,
for otherwise it will be zero (for all contexts). The distributions that determine the causal measure
are given by pi(xi) = p(xi | xi−1) and pi\j(xi) = p(xi | xi−2) and the probabilities of Xi = 1 are
given by:

pi(1) =

{
ε xi−1 = 0

1− ε xi−1 = 1
pi\j(1) =

{
2ε(1− ε) xi−2 = 0

ε2 + (1− ε)2 xi−2 = 1
(15)

with pi(0) = 1− pi(1) and pi\j(0) = 1− pi\j(1). Finally, noting that the relevant contexts are given
by {xPi

, xPj
} = {xi−1, xi−2}, the causal measure is given by:

Cj→i(xi−1, xi−2) =

{
D (ε || 2ε(1− ε)) xi−1 = xi−2
D
(
ε || ε2 + (1− ε)2

)
xi−1 6= xi−2

(16)

We can see that when ε = 1/2, the causal measure is zero for any context. This is consistent with
intuition, as each messenger will pass on the message zero or one with equal probability, regardless
of the message it receives. Then as ε approaches zero, we get:

Cj→i(xi−1, xi−2)→
{
0 xi−1 = xi−2
∞ xi−1 6= xi−2

(17)

To understand this result, fix ε to be an arbitrarily small number and we can say with very high
confidence that each messenger will pass on its received message accurately. Thus, when xi−1 =
xi−2, it is, in a sense, unreasonable to endow Xi−1 with responsibility for causing the value taken by
Xi when it is propagating the message in a nearly deterministic manner (note that for any fixed ε > 0
the causal measure will not be exactly zero). In such a case, it is not so much xi−1 that is causing Xi,
but rather an earlier xi−k for some k ∈ {1, . . . , i− 1} that initiated a chain reaction. On the other
hand, in the unlikely occurrence that xi−1 6= xi−2, intuition would say that Xi−1 absolutely has a
causal effect on Xi. This scenario can be thought of as Xi−1 acting of its own volition in selecting a
message to pass to Xi.

We acknowledge that the notion of an unbounded causal influence is initially unsettling. When
looking closer, however, this property of the causal measure is intuitive. First, we note that for any
fixed ε > 0, the CDMI will be finite. It is only for ε = 0 that the CDMI could be infinite, but in that
case, the context that results in infinite CDMI happens with probability zero. Thus, in general, an
infinite influence could only be achieved through intervention. Furthermore, such an intervention
would have to assign a value to a cause that occurs with probability zero, and that cause would in turn
have to enable an otherwise impossible effect to have non-zero probability.

5.1.1 Analogy – Telephone Wire

Consider a signal passing along a telephone wire, and suppose we segment the wire into arbitrarily
small intervals. Let X1 give the signal sent on one end and Xn be the signal received on the other
end, with each segment Xi passing on the signal it received with very high probability. Recalling
that the CDMI is itself a random variable, we expect that, with very high probability, X1 has a large
causal influence on X2, but the influence of X2 on X3, X3 on X4, and so on, would be negligible.
In this sense, we can think of the signal initiation as starting a chain reaction. On the other hand,
in the unlikely event that the message was corrupted by a malfunction in the wire, we would see
a spike in causal influence at the point where the wire malfunctioned. This is consistent with our
intuition – when our phones function properly, we attribute what we hear to the person speaking on
the other side, but when a call is dropped, we attribute it to a malfunction somewhere in the chain of
communication.
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5.2 Causing Uncertainty

Consider a 3-node DAG characterized by the connections X → Z ← Y and the following (condi-
tional) distributions:

X ∼ Bern(0.5) Y ∼ Bern(0.1) Z | X,Y ∼


Bern(0.5) Y = 1

Bern(0.1) (X,Y ) = (0, 0)

Bern(0.9) (X,Y ) = (1, 0)

Given thatX and Y are both parentless, the CMI and CS are equivalent for this scenario. In particular,
we have that CX→Z = I(X;Z | Y ) ≈ 0.48 and CY→Z = I(Y ;Z | X) ≈ 0.06. Before considering
the context dependent measures, note that characterization of CMI as a difference of conditional
entropies as I(Y ;Z | X) = H(Z | X)−H(Z | X,Y ) provides us with the interpretation of CMI as
the reduction in uncertainty of Z resulting from the added conditioning of Y . Of course, as a result
of conditioning reduces entropy, this will always be non-negative.

Moving on to the CDMI, we consider CX→Z(x, y) and CY→Z(x, y) for (x, y) ∈ {0, 1}2. Given
the symmetry of the problem with respect to X , we only need to consider two of the four possible
contexts, namely (x0, y0) , (0, 0) and (x0, y1) , (0, 1). In order to compute the CDMI for each X
and Y to Z for both contexts, we need the following distributions:

p(Z | x0, y0) = Bern(0.1) p(Z | x0, y1) = Bern(0.5)

p(Z | y0) = Bern(0.5) p(Z | y1) = Bern(0.5)

p(Z | x0) = Bern(0.14)

For a given context, the CDMI is given by CX→Z(x, y) = D (p(Z | x, y) || p(Z | y)) and
CY→Z(x, y) = D (p(Z | x, y) || p(Z | x)):

CX→Z(x, y) ≈
{
0.53 y = 0

0.00 y = 1
CY→Z(x, y) ≈

{
0.01 y = 0

0.52 y = 1
(18)

The results presented above are intuitive: when y = 0, then the value taken by Z is largely determined
by X , and the knowledge that y = 0 tells us very little about the distribution of Z. On the other hand,
when y = 1, X has no bearing on the value taken by Z. Thus, in this scenario, it is the value taken
by Y that has caused the shift in the distribution of Z, even though Y provides no information with
regard to the particular value taken by Z. In this sense, we can think of Y as causing uncertainty in
Z. This scenario makes particularly clear why it makes sense to condition on the cause but take an
expectation with respect to the effect – no outcome z could be attributed to being a result of y = 1,
despite the clear influence that such an event has on the distribution of Z.

5.3 Shared Responsibility

Consider a scenario where a collection of n iid variables Xi ∼ Bern(ε) collectively influence a
single outcome Y , i.e. Xi → Y for i = 1, . . . , n. For a given context {xi}ni=1, let k be the number
of xi that are one, i.e. k =

∑
i xi. Then let Y be distributed as:

Y | X1, . . . , Xn ∼ Bern
(

1

2K

)
where K =

∑
iXi is a random variable. One interpretation of this example is that each Xi is

a potential inhibitor of Y . As more inhibitors become activated (i.e. as k grows), the effect of
adding another inhibitor diminishes. Since the value taken by K depends on a context, however, this
diminishing influence will not be captured by a measure that is not context-dependent.

As with the previous example, the CS and CMI are equivalent for this problem setting. While
there is no simple computation of the CS or CMI as a function of ε and n, there are a couple
of key points. First, the influence of each of the variables Xi on Y is the same, i.e. I(Xi;Y |
X1, . . . , Xi−1, Xi+1, . . . , Xn) = I(X1;Y | X2, . . . , Xn) for all i = 1, . . . , n. Second, as n→∞,
the probability of Y = 1 goes to zero, and as ε → 0, the probability of Y = 1 goes to one. In
either of the limits, the entropy of Y goes to zero and thus so does the causal influence of each Xi as
measured by either CMI or CS.
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Now consider a context {xi}ni=1 and the corresponding CDMICX1→Y ({xi}ni=1). While the influence
of each xi on Y will not be the same for a given context, the symmetry of the problem is such that
the computation will be performed in the same manner for each xi. Letting k1 ,

∑n
i=2 xi be the

number of ones excluding x1, we define the following distributions:

p(Y | {xi}ni=1) = p(Y | k) = Bern

(
1

2k

)
p(Y | {xi}ni=2) = p(Y | k1) = Bern

(
ε

2k1+1
+

1− ε
2k1

)

Then, for a given context, the causal measure is a function of x1 and k1:

CX1→Y (x1, k1) = D (p(Y | k) || p(Y | k1)) =
{
D
(

1
2k1
|| ε

2k1+1 + 1−ε
2k1

)
x1 = 0

D
(

1
2k1+1 || ε

2k1+1 + 1−ε
2k1

)
x1 = 1

In interpreting these results, first assume that ε is small, meaning that for each of the inhibitors,
it is unlikely that it will be activated. As a result of this assumption, we have CX1→Y (0, k1) <
CX1→Y (1, k1), i.e. an inhibitor has a greater influence when it is activated. More interestingly,
we note that CX1→Y (x1, k1) is strictly decreasing in k1. This is consistent with the intuition
provided above, namely that if a large number of inhibitors are active, then they share responsibility
and the influence of any single one is negligible. On the other hand, if only one is activated (i.e.
(x1, k1) = (1, 0)), then in the limit of ε→ 0, its influence will be infinite.

5.3.1 Analogy – Faulty Parts

Consider a scenario as described above, where Xi represents whether or not a particular airplane
component is constructed with defects and Y represents whether or not the airplane crashes as a result
of malfunctioning parts. In real life scenarios, it is reasonable to expect that an airplane component
has a very small probability of being constructed with defects. As such, both CS and DI would say
that the manufacturing of a plane part has very little causal influence on the functionality of the
part. This is not a complete picture – intuitively, we do not think of a properly manufactured plane
component as having a causal influence on the outcome of a flight, at least not to the extent that a
defective component does. Moreover, if by some strange event there were numerous faulty parts,
then we would expect each component to have a lesser responsibility than the case where a single
component was faulty. In this sense, the context-dependent measures are uniquely able to capture
shared responsibility.

6 Discussion

This work is motivated by the observation that different values of a cause will have different levels
of influence upon an effect. The particular value taken by the effect, however, will in general be
random, according to some distribution determined in part by the cause. In order to incorporate this
observation into a method for measuring causal influences, we have introduced context-dependent
extensions to conditional mutual information and causal strength. These methods, in their non-
context-dependent form, are determined entirely by the underlying joint distribution of the variables
in question, and thus are incomplete characterizations of causal influence. We have shown that
by introducing a context-dependence, three new notions of causal influence — chain reactions,
causing uncertainty, and shared responsibility — are easily identified by context-dependent measures.
Moreover, these context-dependent measures are random variables whose expectations recover their
non-context-dependent counterparts.

There are numerous directions for future explorations within the proposed framework. First, there are
a number of ideas discussed here in need of formalization, including measurement of total effects,
a modification of causal strength postulates [6] to accommodate a measure whose value is random,
and formal definitions of the notions of influence that were discussed in Section 5. Beyond the ideas
discussed above, natural next steps include measuring group effects or accounting for unobserved
variables in the graph. A final important direction for future work is development of estimators and
associated bounds on accuracy. In particular, estimating the causal measures for a given context
requires estimation of two distributions (i.e. (5) and (6)), so it may be possible to relate performance
guarantees of density estimators to the performance of estimators of the causal measures.
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